Vidundermateriale skal bruges i fremtidens 3D printere
Teknologisk Institut undersøger nu, hvordan man kan skabe nye typer produkter der udnytter vidundermaterialet graphen.
- Målet med projektet er at blive i stand til at implementere graphen i plastikkomposit-materialer. Når det sker, kan vi fremstille materialer som både er stærkere og mere alsidige, idet deres fysiske egenskaber kan tunes ved at kontrollere graphen-indholdet. På lang sigt vil vi kunne forbedre allerede kendte produkter samt udnytte materialernes specielle egenskaber til at åbne op for nye muligheder, siger ph.d. og konsulent Jonas Ørbæk Hansen fra Teknologisk Institut.
Øget fokus på funktionalitet
Teknologisk Institut er en del af det europæiske projekt NanoMaster, hvor forskere fra videninstitutioner og industri i otte lande arbejder sammen om at komme til at udnytte graphen industrielt. Konceptet for projektet er at udvikle de forarbejdningsmetoder, der er nødvendige for at opskalere produktionen graphen- og nanografit-forstærkede termoplastiske kompositmaterialer for i sidste ende at muliggøre en industriel kommercialisering i Europa.
Første skridt er at udvikle effektive metoder til at producere graphen og fordele det jævnt i plastikpolymeren, så anvendelsen af graphen bliver konkurrencedygtig i forhold til eksisterende alternativer (fx glasfiberforstærkede plastikmaterialer). Dernæst skal mulighederne ved de nye plastikkompositter demonstreres ved i samarbejde med industrielle slutbrugere, såsom Philips og Röchling Automotive, at anvende dem i egentlige komponenter/produkter, fremstillet med traditionel sprøjtestøbning eller additive manufacturing (3D print). Teknologisk Instituts rolle bliver at udvikle 3D print teknologierne til at kunne håndtere de nye kompositmaterialer.
Den største fordel ved additive manufacturing er den store grad af fleksibilitet i produktionen, den medfører. Da der ikke skal anvendes specialfremstillede værktøjer/forme til produktionen, kan produktionsomkostninger og time-to-market reduceres betragteligt, og produktdesignet kan nemt justeres løbende. Desuden tillader produktionsmetoden at fremstille komplekse strukturer, der ikke kan opnås gennem konventionelle plaststøbningsmetoder.
- Hvor additive manufacturing for få år siden mest blev anvendt til at fremstille prototyper, er det i dag en moden teknologi, der kan anvendes til at producere færdige produkter. Ved additive manufacturing er der næsten ingen begrænsninger i de strukturer, man kan fremstille. Dermed kan ingeniøren eller designeren fokusere på funktionalitet og udseende frem for de begrænsninger i geometri, som typiske konventionelle produktionsmetoder medfører, siger Jonas Ørbæk Hansen.
Komponentvægt skal reduceres med 50 procent
Kompositmaterialernes potentielle anvendelser er store inden for bil- og flyindustrien samt inden for forbrugerelektronik, der kan udnytte materialernes høje styrke/vægt forhold til at fremstille lette og stærke alternativer, som kan erstatte eksisterende tungere løsninger.
Målet er at reducere plastikmængden anvendt til at producere en komponent med 50 procent og dermed reducere komponentens vægt med 50 procent. Samtidig åbner de nye materialer op for at inkorporere nye funktionaliteter i komponenterne, der udnytter den øgede elektriske og termiske ledningsevne, for eksempel til indbyggede sensorer eller forbedret elektromagnetisk kompatibilitet (EMC).
Det europæiske projekt NanoMaster blev sat i søen december 2011 og løber over fire år. Projektet ledes af NetComposites, UK, og involverer 12 andre projektpartnere: Teknologisk Institut, Danmark, Create It Real Aps, Danmark, Philips Consumer Lifestyle, Holland, Timcal, Schweiz, Röchling Automotive, Italien, Asociación de Investigación de Materiales Plásticos y Conexas, Spanien, Aero Engine Controls, UK, Promolding, Holland, Avanzare Innovacion Tecnologica, Spanien, Master Build Prototype, Frankrig, The Institute of Occupational Medicine, UK, og LATI Industria Termoplastici, Italien.